Quantum Mechanics on Discrete Space and Time
نویسنده
چکیده
We propose the assumption of quantum mechanics on a discrete space and time, which implies the modification of mathematical expressions for some postulates of quantum mechanics. In particular we have a Hilbert space where the vectors are complex functions of discrete variable. As a concrete example we develop a discrete analog of the one-dimensional quantum harmonic oscillator, using the dependence of the Wigner functions in terms of Kravchuk polynomials. In this model the position operator has a discrete spectrum given by one index of the Wigner functions, in the same way that the energy eigenvalues are given by the other matricial index. Similar picture can be made for other models where the differential equation and their solutions correspond to the continuous limit of some difference operator and orthogonal polynomial of discrete variable.
منابع مشابه
کوانتش گرانش و بررسی هندسی مکانیک کوانتمی
We elaborate on some recent results on a solution of the Hilbert-space problem in minisuperspace quantum cosmology and discuss the consequences of making the (geometry of the) Hilbert space of ordinary nonrelativistic quantum systems time-dependent. The latter reveals a remarkable similarity between Quantum Mechanics and General Relativity.
متن کاملSuper algebra and Harmonic Oscillator in Anti de Sitter space
The harmonic oscillator in anti de Sitter space(AdS) is discussed. We consider the harmonic oscillator potential and then time independent Schrodinger equation in AdS space. Then we apply the supersymmetric Quantum Mechanics approach to solve our differential equation. In this paper we have solved Schrodinger equation for harmonic oscillator in AdS spacetime by supersymmetry approach. The shape...
متن کاملUmbral Calculus, Difference Equations and the Discrete Schrödinger Equation
We discuss umbral calculus as a method of systematically discretizing linear differential equations while preserving their point symmetries as well as generalized symmetries. The method is then applied to the Schrödinger equation in order to obtain a realization of nonrelativistic quantum mechanics in discrete space–time. In this approach a quantum system on a lattice has a symmetry algebra iso...
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملQuantum Mechanics and the Mechanism of Sexual Reproduction
There are many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms. The mechanism of the meiosis, mitosis and gametes life cycle from the view-point of quantum for human has been represented. The quantum gates have been used to simulate these processes for the first time. The reason of several hundred sperms has been explained in the male too
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004